Theoretical Studies on the UO_2^{2+} and Sr^{2+} Complexation by Phosphoryl-Containing $O=PR_3$ Ligands: QM ab Initio Calculations in the Gas Phase and MD FEP Calculations in Aqueous Solution

F. Hutschka, A. Dedieu,* L. Troxler, and G. Wipff*

UMR 7551, Institut de Chimie, Université Louis Pasteur, 4, rue Bloise Pascal, 67 000 Strasbourg, France Received: December 9, 1997: In Final Form: February 27, 1998

We report a series of ab initio QM calculations on uranyl and Sr^{2+} complexes of O=PR₃ ligands (R = H Me Ph) to assess the role of substituents R and of NO₃⁻ counterions on the intrinsic cation-ligand interaction energy. When there are no counterions, the binding sequence of UO_2^{2+} and of Sr^{2+} complexes follows the order R = H < Me < Ph, due to polarization and charge-transfer effects. However, in the presence of NO₃⁻ counterions, the OPMe₃ and OPPh₃ complexes become of similar stability, due to the ligand-anion repulsive interactions. Complexes of OPR₃ with the spherical Sr^{2+} cation are found to be less stable than those with the linear UO_2^{2+} cation. In the second part of the paper we report molecular dynamics simulations in water on 1:1 and 2:1 complexes of OPR₃ with $UO_2(NO_3)_2$. The changes in free energies of solvation upon electronic reorganization of the ligand and $UO_2(NO_3)_2$ induced by complexation are investigated using statistical perturbation FEP techniques and found to be nearly independent of R. The importance of these results in the context of designing efficient ionophores for uranyl cations is discussed.

Introduction

The search for complexant molecules which specifically bind actinides and separate them from other cations represents a challenging task in the context of nuclear waste separation techniques and from a basic point of view.^{1,2} The elementary interactions between the cation and the binding sites of the ligand are of major importance for the binding strength and selectivity.^{3,4} In contrast with the large amount of theoretical and experimental data on alkali cations M⁺,⁵ those dealing with actinides and lanthanides are rather scarce. Concerning the uranyl cation, there are quantum mechanical studies on the bare ion⁶⁻⁹ or its UO₂(NO₃)₂ and UO₂SO₄ salts,⁷ and molecular dynamics simulations on the free and complexed ion in solution.^{10–13} This led us to undertake systematic theoretical studies of these interactions, with various ions and ligands. In this paper, we focus on the uranyl cation UO_2^{2+} interacting with phosphoryl O=P binding sites. The latter are binding fragments of extractant molecules such as TBP (tributyl phosphate). CMPO, and phosphine oxides used experimentally (TRUEX process^{14,15}) to extract lanthanides from nuclear wastes selectively, but so far, the question of their intrinsic interactions with actinides or lanthanides cations has not been elucidated.

Here, we first report a quantum mechanical (QM) study of UO_2^{2+} complexes with small model O=PR₃ ligands (R = H, methyl, phenyl) in order to compare their precise structures and intrinsic (gas phase) interaction energies as a function of R. With the smallest system (OPH₃ complex), several methodological investigations are performed concerning the basis set and the level of calculation. We then assess the role of counterions on the $UO_2^{2+\cdots}OPR_3$ interactions in the 1:1 complexes (R = H, Me, Ph). The NO₃⁻ anion was selected as counterion, because of the many related structural data¹⁶ and because it is present in high concentrations in liquid solutions of nuclear wastes.¹⁵ With the OPH₃ and OPMe₃ complexes, the 1:1 and 2:1 stoichiometries are considered. On the basis of

these QM studies, the atomic charges on the different moieties of the complexes are calculated and discussed.

To compare the intrinsic binding features of the linear UO_2^{2+} with those of a spherical divalent cation we also simulated the $Sr^{2+}\cdots OPR_3$ and $Sr(NO_3)_2\cdots OPR_3$ 1:1 complexes, as Sr^{2+} is also potentially present in nuclear waste.

In addition to intrinsic binding features, solvation strongly contributes to the stability, nature, and binding selectivity of the complexes.^{17,18} We therefore decided to simulate these complexes in aqueous solution to characterize their solvation features and stability. Water was chosen as a solvent, first to represent the source phase in extraction experiments, where the cation uptake by the ligand may take place. Second, the organic receiving phase is saturated with water, whose local concentration around the polar solute may be quite high. Water is also a strong competitor with ligand-cation binding. From the computational point of view, the direct calculation of absolute free energies of solvation would be presently untractable for large systems, but differences in free energies of solvation can be obtained more easily when the systems formally transform one into the other via small perturbations. As the ligand binds to a cation, there is some electron transfer to the latter, while the ligand becomes polarized. This electronic reorganization (ER) can be viewed as a series of small perturbations from the free to the complexed state, and the related change in solvation energy can be calculated using statistical perturbation techniques. Our goal in doing so was to assess the magnitude of this solvation effect as a function of the R substituent, compared to the change in intrinsic binding interactions. It could be indeed anticipated that the ligand which becomes the most polarized upon complexation also becomes the best hydrated and that changes in solvation could therefore contribute to the ion extraction selectivity.

Another of the motivations of our study was the so-called "anomalous aryl effect" (AAE) reported with bidentate phosphoryl containing ligands.¹ The AAE can be summarized as follows. In the case of neutral monodentate extractants, the extraction ability is reduced if the electronegativity of substituents adjacent to the P=O binding site increases, as expected from the electron withdrawal by the oxygen atom. However, with potentially bidendate diphosphine dioxides and CMPOs extractant molecules, replacement of alkyl by electronwithdrawing phenyl or tosyl groups enhances, instead of reducing, the extraction of Am^{3+} or of $UO_2^{2+,1}$ This "aryl effect" is very useful for the extraction of actinides from nuclear waste, but is not clearly understood. For instance, the recently synthesized CMPO-calixarenes with O=P(phenyl)₂ moieties efficiently extract actinides and lanthanides, whereas the $O=P(alkyl)_2$ analogues do not.¹⁹ This is why we compare OPMe₃/OPPhe₃ as model ligands to investigate the alkyl/aryl substituent effect.

Methods

The QM ab initio calculations were performed at the SCF and MP2 levels using the Gaussian-92 package.²⁰ The U atom is described as in ref 7 by the effective relativistic one-electron pseudopotential of Hay²¹ for the 78 core electrons, corresponding to the $[Xe]4f^{14}5d^{10}$ configuration of the Pt atom. The valence (5f,6d,7s) and semicore (6s,6p) orbitals of U are described by a [3s 3p 2d 2f] contracted Gaussian basis set. The explicit consideration of the semicore electrons (6s and 6p) in addition to the valence electrons should allow a correct treatment of the correlation effects at the MP₂ level.²² One may of course worry about the non explicit representation of 5s, 5p, and 5d electrons. Calculations by Pyykkö et al.²³ carried out for UO_2^{2+} with either the 78-core-electron pseudopotential of Hay used here or the 60-core electron pseudopotential of Küchle et al.,²⁴ in conjunction with a larger basis set for U and O, yielded at the HF level U-O bond length values that are close to each other (1.673 and 1.660 Å, respectively). Very recent CCSD calculations carried out with the 60-core-electron pseudopotential yield a slighly greater value (1.697 Å). As we mostly focus on differences in binding properties within a series of ligands, our representation should be reasonable.

In our standard calculations, the Dunning double- ζ basis set was used for H, C, N, O, and P, with one set of 3d polarization functions on the P atom ($\zeta_{3d} = 0.37$). This basis is referred to as DZP*. In additional test calculations on the UO₂(NO₃)₂ OPR₃ complexes, polarization functions were added on "all" atoms (excepted on uranium) (i.e., the H ($\zeta_{2p} = 0.8$), C ($\zeta_{3d} = 0.75$), N ($\zeta_{3d} = 0.8$), O ($\zeta_{3d} = 0.85$) atoms). This basis set is hereafter referred to as the DZA* basis set.

The geometry optimization was carried out as follows. The free ligands OPH₃, OPMe₃, and OPPh₃ were first optimized using analytical gradients. For OPPh₃, a pseudo C_s symmetry was assumed for the OPC₃ fragment, while the phenyl rings were allowed to rotate around the P-C bonds. For the optimizations of the systems involving UO_2^{2+} , a numerical gradient was used. The UO2(NO3)2 salt was optimized under a D_{2h} symmetry constraint, according to the experimental geometries of $UO_2(NO_3)_2(H_2O)_2$ ²⁵ or $UO_2(NO_3)_2(H_2O)_6$.²⁶ The $[UO_2\cdots OPR_3]^{2+}$ and $UO_2(NO_3)_2\cdots OPPh_3$ systems were optimized using the following constraints: C_s symmetry for R = H and Me ($\gamma = 0^\circ$; see Figure 1), pseudo C_s symmetry for R = Ph as in OPPh₃ (i.e., allowing again the rotation of the phenyl rings), collinear arrangement of the O=U=O atoms of the uranyl and of the P=O····U atoms ($\alpha = 180^\circ$; see Figure 1). For R = Ph, additional constraints were imposed: in $[UO_2 \cdots$ $OPPh_3$ ²⁺ the geometry of the phenyl ring was constrained to

Figure 1. Schematic representation of the $UO_2^{2+} \cdots OPR_3$ complexes (R = H/Me/Ph)

be the same as that in the optimized OPPh₃ ligand, and only the P–C, the P=O distances, the O–P–C angles, and the rotation angle around the P–C bond were optimized. In the $[UO_2(NO_3)_2\cdots OPPh_3]$ system, only the P=O distance and the rotation around the P–C bond were allowed to vary and the other geometrical parameters were kept as in $[UO_2\cdots OPPh_3]^{2+}$. Similarly, the geometry of the two NO₃⁻ groups was kept as in $[UO_2(NO_3)_2\cdots OPMe_3]$ and only the U···N distance was allowed to vary. For the Sr²⁺ complexes, constraints analogous to the ones described above for the UO_2^{2+} systems were used.

The interaction energies between OPR₃ and the cation (in the complexes without counterion) or the UO₂(NO₃)₂ salt (in the presence of counterions) were calculated in the optimized complexes, and corrected for basis set superposition errors ("BSSE") using the counterpoise method.²⁷ As shown below, this correction turned out to be nearly constant in the series R = H/Me/Ph for the 1:1 complexes with UO₂²⁺, Sr²⁺, or UO₂(NO₃)₂. Since we are mostly interested in the assessment of energy *variations*, the BSSE was therefore not calculated for the 2:1 complexes. In the optimized structures, the atomic charges were obtained by a Mulliken population analysis.

The molecular dynamics (MD) simulations were performed using AMBER4.1,²⁸ based on the following empirical representation of the potential energy, described in ref 28:

$$V = \sum_{\text{bonds}} K_{r} (r - r_{eq})^{2} + \sum_{\text{angles}} K_{\theta} (\theta - \theta_{eq})^{2} + \sum_{\text{dihedrals}} V_{n} (1 + \cos n\phi) + \sum_{i < j} (q_{i}q_{j}/R_{ij} - 2\epsilon_{ij} (R_{ij}^{*}/R_{ij})^{6} + \epsilon_{ij} (R_{ij}^{*}/R_{ij})^{12})$$

We used the AMBER parameters²⁹ on the solute and atomic charges taken from the QM ab initio studies. The parameters of the UO_2^{2+} and NO_3^{-} are those of ref 12. The solute was immersed in a cubic box of TIP3P³⁰ water molecules, represented with periodic boundary conditions (see Table 5, vide infra). All nonbonded interactions were calculated using a residue based cutoff of 12 Å. After energy minimization, the dynamics was run for 100 ps at 300K and constant pressure of 1 atm.

The differences in free energies of hydration between states A (electronic distribution of OPR₃ and of UO₂(NO₃)₂ before complexation) and B (electronic distribution in the complex) were obtained using the statistical perturbation theory,³¹ where the atomic charge of each atom i was calculated as $q_{i(\lambda)} = \lambda q_{i(B)} + (1 - \lambda) q_{i(A)}$, and λ was increased from 0 (state A) to 1 (state B) in 10 windows. At each window, we performed 1 ps of equilibration + 4 ps of data collection and the change in free energy ΔG_{λ} was obtained by

$$\Delta G_{\lambda} = RT \operatorname{Ln} \left\langle \exp(E_{\lambda} - E_{\lambda + \Lambda \lambda}) / RT \right\rangle_{\lambda}$$

and $\Delta G = \sum_{\lambda} \Delta G_{\lambda}$.

The analysis of the trajectories was performed using out MDS and DRAW programs.³²

TABLE 1: Total Energies, Orbital Energies, Structures, and Mulliken Charges Obtained at the HF/DZP* Level for the Free OPR₃ Ligands

e	0						
R	Н	Me	Ph				
Energies (au)							
E_{T}	-417.2928	-534.4057	-1105.7547				
$\pi^* P=O$	0.199	0.211	0.276				
$\sigma^* P-O$	0.181	0.199	0.235				
$\pi P=0$	-0.438	-0.402	-0.409				
$\sigma P-O$	-1.301	-1.273	-1.277				
Structures (Å and degrees)							
P=O	1.502	1.509	1.510				
$P-X^a$	1.411	1.822	1.824				
$O=P-X^a$	116.2	112.9	111.4				
Mulliken Charges ^b							
$OPR_3 O$	-0.600	-0.648	-0.640				
	(-0.747)	(-0.800)	(-0.801)				
Р	0.414	0.564	0.472				
	(0.792)	(0.746)	(0.843)				
R	0.062	0.028	0.056				
	(-0.015)	(0.018)	(-0.014)				

 ${}^{a}X = H$ in OPH₃ and X = C in OPMe₃ and OPPh₃. b Values in parentheses correspond to the HF/DZA*//HF/DZP* calculations.

Results

In the following sections 1-3, we describe the main structural and energy results in the gas phase, based on QM ab initio calculations. Unless otherwise specified, they were performed at the HF/DZP* level, common to all systems. Then, in section 4, we consider the effect of changes in solvation, due to the ER induced by complexation.

(1) QM ab Initio Calculations on the Free OPR₃ Ligands: Structures and Electronic Features. The main structural and electronic features of the free ligands (Table 1) obtained at the HF/DZP*//HF/DZP* level show that the phosphoryl groups of the alkyl and phenyl derivatives are very similar: see, for instance, the P=O distance, the q_0 charge, and the energies of the π and σ oxygen lone-pair orbitals. These values differ in the smallest OPH₃ ligand, where the P=O bond is somewhat shorter, the oxygen lone-pair orbitals are more stable, and the q_0 charge of the phosphoryl oxygen is less negative. Thus, the replacement of alkyl or aryl groups by H atoms for computer time saving purposes may lead to some artifacts. On the other hand, the similarity of phosphoryl groups next to aryl/alkyl ligands found in their free states contrasts with the differences observed in their complexed states (see next).

The calculated structures of OPMe3 and OPPh3 are in reasonable agreement with the ones determined either by electron diffraction (for OPMe₃³³) or by X-ray crystallography (for OPMe₃ and OPPh₃).³⁴ Experimentally, the P=O and P-C bond lengths in OPMe₃ obtained by X-ray crystallography are somewhat different (1.489 and 1.771 Å) from those determined by electron diffraction data (1.476 and 1.809 Å). These values are close to those obtained also by crystallography for the OPPh₃ molecule (from 1.48 to 1.49 Å, and 1.80 Å).³⁴ Our calculated values amount to 1.51 and 1.82 Å at the HF/DZP* level. Thus the P=O bond is slightly too long. This feature is not corrected at the MP2 level, since the corresponding MP2/DZP* value is 1.54 Å (the P–C value being 1.84 Å). It is traced instead to the lack of polarization functions on the atoms other than phosphorus: For OPMe3 the DZA* basis set, that includes such polarization functions, yields P=O and P-C values of 1.49 and 1.83 Å (HF level). We note that a previous calculation,³⁵ using for the phosphorus d polarization function an exponent that was optimized on the molecular system, led to slightly better values of 1.48 and 1.84 Å.

Figure 2. Optimized structural parameters in the $UO_2^{2+\cdots}OPR_3$ and $UO_2(NO_3)_2\cdots OPR_3$ 1:1 complexes with the DZP* basis set at the HF level (first line) and at the MP2 level (in parentheses).

Figure 3. Schematic representation of stabilizing electronic rearrangements upon coordination of OPR_3 to UO_2^{2+} .

Figure 4. Optimized structural parameters in the $UO_2(NO_3)_2\cdots OPR_3$ 2:1 complexes (with the DZP* basis set at the HF level).

(2) Binding of OPR₃ to the UO_2^{2+} Cation and to the $UO_2(NO_3)_2$ Salt in the Gas Phase: ab Initio QM Results. The structures of the ab initio minimized complexes are reported in Figures 2–4, and the energy features, together with the Mulliken charges, are reported in Tables 2 and 3.

 $UO_2^{2^+\cdots}OPR_3$ Complexes (No Counterion). We first consider the $UO_2^{2^+\cdots}OPR_3$ complexes and define the "complexation energy" as $\Delta E = E_{\text{complex}} - E_{\text{OPR3}} - E_{\text{cation}}$.

Table 2 shows that there is a spectacular substituent effect on the intrinsic ion···· OPR₃ attraction energies which increase from 122 (R = H) to 163 kcal mol⁻¹ (R = Ph). As the BSSE correction is nearly constant in the series (from -4.0 to -4.5

TABLE 2: Total Energies (in au), Interaction Energies (in kcal mol⁻¹), and Mulliken Charges in the UO₂²⁺...OPR₃ 1:1 Complexes

	Н		Me			Ph		
R level	HF/DZP*// HF/DZP*	HF/DZA*// HF/DZP*	MP2/DZP*// MP2/DZP*	HF/DZP*// HF/DZP*	HF/DZA*// HF/DZP*	MP2/DZP*// MP2/DZP*	HF/DZP*// HF/DZP*	HF/DZA*// HF/DZP*
$E_{\rm T}$ ΔE BSSE $\Delta E^{\rm cp}$	-617.1248 -121.6 -4.0 -117.6	-617.2071 -108.4 -3.1 -105.3	-617.9999 -115.8 -7.9 -107.9	Energies -734.2754 -145.3 -4.5 -140.8	-734.4100 -132.2	-735.4156 -143.1	-1305.6520 -162.6 -4.5 -158.1	1306.0242 -149.2
				Mulliken Charge	es			
$UO_2 O$	-0.121	-0.262		-0.146	-0.287		-0.178	-0.309
U	1.967	2.250		1.943	2.224		1.942	2.203
Total UO ₂	1.725	1.726		1.651	1.650		1.586	1.585
$OPR_3 O$	-0.844	-0.923		-0.885	-0.968		-0.903	-0.991
Р	0.465	0.792		0.549	0.691		0.555	0.927
R	0.218	0.135		0.228	0.209		0.254	0.159
Total OPR ₃	0.275	0.274		0.349	0.350		0.414	0.415

TABLE 3: Total Energies (in au), Interaction Energies (in kcal mol⁻¹), and Mulliken Charges in the UO₂(NO₃)₂···OPR₃ 1:1 and 1:2 Complexes (Calculations Performed with the DZP* Basis Set at the HF Level)

		Н	Me		Ph		
R	1:1	1:2	1:1	1:2	1:1		
		Ene	rgies				
<i>E</i> _T (a.u.)	-1175.4582	-1592.8003	-1292.5869	-1827.0500	-1863.9342		
ΔE	-49.3	$-40.1 (\Delta E_1)$	-59.2	$-47.6 (\Delta E_1)$	-58.1		
		$-30.9 (\Delta E_2)$		$-36.0 (\Delta E_2)$			
BSSE	-4.5		-5.0		-5.2		
$\Delta E^{ m cp}$	-44.8		-54.2		52.9		
Mulliken Charges							
$UO_2 O$	-0.301	-0.341	-0.341	-0.360	-0.322		
U	1.867	1.934	1.882	1.964	1.893		
Total UO ₂	1.265	1.252	1.258	1.244	1.249		
$OPR_3 O$	-0.717	-0.671	-0.786	-0.732	-0.861		
Р	0.434	0.436	0.567	0.574	0.554		
R	0.136	0.121	0.125	0.104	0.157		
Total OPR ₃	0.125	0.128	0.156	0.151	0.164		
NO ₃ N	0.521	0.506	0.520	0.504	0.523		
O1	-0.497	-0.493	-0.498	-0.494	-0.499		
O_2	-0.222	-0.274	-0.231	-0.289	-0.232		
Total NO ₃	-0.695	-0.754	-0.707	-0.773	-0.707		

kcal mol⁻¹), the BSSE corrected complexation energies ΔE^{cp} follow the same trend as ΔE , and the energies range from -118 (OPH₃) to -141 (OPMe₃) and -158 kcal mol⁻¹ (OPPh₃). The interaction energies increase with the polarizability of R ($\alpha_{H} < \alpha_{alkyl} < \alpha_{aryl}^{36,37}$) which varies as the electron donating properties of R. The evolution of structural and electronic features may be understood if one considers the ionic form $^{-}O-PR_3$ of PR₃ (Figure 3), which is stabilized by R-donating groups (Ph > alkyl > H) and displays the largest interactions with UO₂²⁺.

Indeed, in the H/Me/Ph series of complexes, the U···O_P distance shortens (from 2.21 to 2.12 Å), while O=P increases (from 1.58 to 1.62 Å). This is consistent with the weakening of P=O stretching frequencies upon complexation observed by IR.³⁸ The phosphoryl oxygen becomes more negative (from -0.84 to -0.90 e). There is also a significant electron transfer (from 0.27 to 0.41 e) from the ligand to UO₂²⁺. A comparison of the OPMe₃/OPPh₃ complexes reveals that the electrons are transferred to the O atoms of UO₂²⁺, while the $q_{\rm U}$ charge remains constant. In agreement with the above scheme, the $q_{\rm P}$ charge is less positive in the OPPh₃ than in the OPMe₃ complex. Comparison of the charge distribution in the free/complexed ligands (Tables 1 and 2) shows in every case a clear R^{$\delta+-$} PO^{$\delta-$} polarization of the ligand induced by the complexation.

Methodological tests concerning the role of polarization functions in the basis set were performed on the three OPR₃ complexes. A comparison of the HF/DZA*//HF/DZP* with the HF/DZP*//HF/DZP* interaction energies ΔE shows a decrease (from 13.1 to 13.4 kcal mol⁻¹) with the more extended DZA* basis set (Table 2). However, as this energy shift is nearly independent of R, the *relative* binding energies of the OPH₃/OPMe₃/OPPh₃ ligands are not critically dependent on the use of polarization functions on C, O, and H atoms. Thus the DZP* basis set was used for the other complexes.

One may also worry about the role of electron correlation on the ion-ligand interaction energies ΔE . To this end we compared HF to MP2 calculations for the OPH₃/OPMe₃ complexes with the DZP* basis set (Table 2). Taking into account the correction for electron correlation somewhat reduces ΔE (by 5.9/2.1 kcal mol⁻¹, respectively) but this effect is relatively small, compared to the change related to the R substituent (about 20 kcal mol⁻¹).

 $UO_2(NO_3)_2 \cdots OPR_3$ Complexes. We now consider the $UO_2(NO_3)_2 \cdots OPR_3$ 1:1 complexes and define the complexation energy as $\Delta E = E_{complex} - E_{OPR3} - E_{salt}$, where the $UO_2(NO_3)_2$ salt and OPR_3 ligand have been energy minimized. The BSSE energy correction is again nearly constant in this series (from 4.5 to 5.2 kcal mol⁻¹; see Table 3), and it will not be considered further. For the two smallest OPH₃ and OPMe₃ ligands, the 2:1 stoichiometries were also calculated. Their ΔE_1 and ΔE_2

energies correspond to the successive complexation of the first and second ligand, respectively.

For the 1:1 complexes, it can be first noticed that, upon NO₃⁻ coordination to the uranyl cation, the interaction energy with OPR₃ drops markedly and that it depends on the R substituent $(\Delta = 72 \text{ kcal mol}^{-1} \text{ for OPH}_3, 86 \text{ kcal mol}^{-1} \text{ for OPMe}_3, \text{ and}$ 104 kcal mol⁻¹ for OPPh₃). These numbers suggest that there is some repulsion between the NO₃⁻ anions and OPR₃, which increases from OPH₃ to OPPh₃. Second, concerning the effect of R on the complexation energy ΔE , the OPH₃ ligand is the least well complexed, as when there are no counterions. There is, however, a marked difference concerning the OPMe₃/OPPh₃ ligands, which now display similar interactions with the $UO_2(NO_3)_2$ fragment (about 58 kcal mol⁻¹). Thus, the most polarizable and electron donating Ph group no longer leads to the most stable complex. We believe that this is related to the anion-ligand repulsions (see below). The structural consequence of these repulsions is that, in the 1:1 complexes, the angle between the O_P····U···N_{NO3}⁻ atoms deviates from 90° and is largest for the OPPh₃ complex (108°). The U···N_{NO₃}distance is also largest in that complex (Figure 2), and is 0.05 Å larger than in the isolated UO2(NO3)2 salt. Another related parameter is the change of U····O_P distances. In the complexes without counterions, the latter decreases from OPMe₃ to OPPh₃, in relation with the increase of cation-ligand interactions. In the presence of NO_3^- counterions, this distance is nearly identical in these two complexes; presumably as a compromise between antagonist forces: compared to OPMe₃, the OPPh₃ ligand is more attracted by the cation, but is also more repulsed by the anions.

Some other interesting differences dealing with the structure of UO_2^{2+} can be noticed: in the absence of counterions, $d_{U=O}$ increases from 1.68 (OPH₃) to 1.69 Å (OPPh₃). Anion coordination to the cation markedly lengthens the U=O bond, whose length remains constant whatever the ligand is (1.72 Å).

When the OPR₃ ligand binds the neutral UO₂(NO₃)₂ species, the electron transfer from the ligand is much weaker (from 0.13 to 0.16 e) than in the UO₂²⁺ complexes (from 0.27 to 0.41 e), but follows the same trend as a function of R. Conversely, the total charge of uranyl displays minor perturbations in the UO₂(NO₃)₂ complexes (from 1.26 to 1.25 e), compared to the UO₂²⁺ complexes (from 1.72 to 1.59 e), due to a compensation between the changes of q_0 and q_U contributions (Table 3).

We now consider the 2:1 complexes which have been optimized with the OPH₃ and OPMe₃ ligands. First, as expected, the complexation of a second ligand brings about less stabilization (about 10 kcal mol⁻¹) than the first one, due to the ligand–ligand and to the ligand–anion repulsions. However, ΔE_2 follows the same trend as ΔE_1 (i.e., is more attractive with OPMe₃ than with OPH₃ (by about 6 kcal mol⁻¹). As a result of the ligand–ligand and ligand–anion repulsions, the U···O_P distances are larger in the 2:1 than in the 1:1 complexes ($\Delta = 0.17$ Å with OPH₃ and 0.09 Å with OPMe₃ ligands). The P=O bonds of the ligand are also shorter in the 2:1 than in the 1:1 complexes ($\Delta = 0.07$ Å with OPH₃ and 0.01 Å with OPMe₃ ligands).

Concerning the NO_3^- anions, it can be noticed that the two N–O distances of the coordinated oxygens are longer than that of the free N–O (by 0.08 to 0.10 Å), as found in related solid-state structures.¹⁶

(3) Binding of OPR₃ to the Sr^{2+} Cation and to the $Sr(NO_3)_2$ Salt in the Gas Phase: ab initio QM Results. The calculations on the $Sr^{2+}\cdots OPR_3$ and $Sr(NO_3)_2OPR_3$ 1:1

Figure 5. Optimized structural parameters in the $Sr^{2+\cdots}OPR_3$ and $Sr(NO_3)_2\cdots OPR_3$ 1:1 complexes (with the DZP* basis set at the HF level).

complexes were performed at the HF/DZP*//HF/DZP* level, assuming a coplanar arrangement of the UO2(NO3)2 and P=O groups (local $C_{2\nu}$ symmetry). Optimized structural parameters and related energy features are reported in Figure 5 and in Table 4. They follow the same trends as for the UO_2^{2+} cation complexes. First, the binding energy of OPR₃ increases in the series H < Me < Ph, without or with counterions, and is reduced upon coordination of NO3⁻ counterions. However, interactions of a given ligand with Sr^{2+} are weaker than those with UO_2^{2+} (by about 24 to 35 kcal mol⁻¹ without counterions, and by 15 to 19 kcal mol^{-1} with counterions). Accordingly, in the absence of counterions, the O_P distances with Sr^{2+} are 0.03-0.05 Å larger than those with the U atom of UO_2^{2+} . They also decrease from the OPH₃ to OPPh₃ by 0.07 Å. In line with this difference in ion-ligand interactions, the O=P bonds are 0.01 to 0.02 Å shorter in the Sr^{2+} than in the UO_2^{2+} complexes. The electron transfer from the ligand is also smaller in the Sr^{2+} (from 0.14 to 0.21 e) than in the UO_2^{2+} complexes (from 0.27 to 0.41 e). Similar trends are observed in UO2(NO3)2 complexes, but the effects are smaller (see Table 3). Thus, to summarize this section, it is clear that, despite the lack of repulsive secondary interactions between the O_{UO2} and O_P atoms, the spherical Sr²⁺ cation displays weaker interactions with phosphoryl ligands than the linear UO_2^{2+} ion does. This conclusion is confirmed by similar QM calculations on the corresponding 2:1 complexes Sr(NO₃)₂(OPR₃)₂.45

(4) Changes in Free Energies of Hydration upon Complexation-Induced Electronic Reorganization in the $UO_2(NO_3)_2\cdots OPR_3$ 1:1 and 2:1 Complexes. In this section, we attempt to get insights into changes in hydration free energies of the solute ΔG_{hyd} , due to the ER induced by complexation. For this purpose, we assume for simplicity that the ER in solution can be depicted by the ER in the gas phase (i.e., that the mutual solute—solvent polarization and charge-transfer interactions can be neglected). In these calculations, the potential energy of the system is depicted using a force field model, where the nonbonded interatomic interactions are calculated by a 1-6-12 Coulombic + Lennard-Jones potential.

TABLE 4: Total Energies (in au) and Interaction Energies (in kcal mol^{-1}), and Mulliken Charges in the $Sr^{2+}\cdots OPR_3$ and $Sr(NO_3)_2\cdots OPR_3$ 1:1 Complexes (Calculations Performed with the DZP* Basis Set at the HF Level)

$\mathrm{Sr}^{2+}(\mathrm{NO}_3^-)_n\cdots\mathrm{OPR}_3$	Sr ²⁺ (NO ₃	-) <i>n</i> ••••OPH ₃	$\mathrm{Sr}^{2+}(\mathrm{NO}_3^-)_n\cdots\mathrm{OPMe}_3$		$\mathrm{Sr}^{2+}(\mathrm{NO}_3^-)_n\cdots\mathrm{OPPh}_3$			
n	0	2	0	2	0	2		
	Energies							
$E_{\rm T}$ (a.u.)	-447.2270	-1105.4811	-564.3673	-1122.6043	-1135.7363	-1693.9536		
ΔE	-96.4	-33.8	-113.6	-40.3	-126.1	-40.5		
BSSE	-3.1	-3.3	-3.3	-3.6	-2.6	-3.2		
$\Delta E^{ m cp}$	-93.3	-30.5	-110.3	-36.7	-123.5	-37.3		
]	Mulliken Charges					
Sr	1.855	1.568	1.807	1.542	1.788	1.552		
$OPR_3 O$	-0.889	-0.700	-0.953	-0.769	-0.997	-0.816		
Р	0.446	0.423	0.570	0.574	0.588	0.528		
R	0.196	0.121	0.192	0.103	0.207	0.130		
Total OPR ₃	0.145	0.086	0.193	0.114	0.212	0.102		
NO ₃ N		0.479		0.479		0.481		
O_1		-0.525		-0.522		-0.522		
O_2		-0.256		-0.263		-0.264		
Total NO ₃		-0.827		-0.828		-0.827		

TABLE 5: MD and FEP Simulations on the $UO_2(NO_3)_2$...OPR₃ 1:1 and 1:2 Complexes in Water. Size of the Water Box (Å³) and Number of Water Molecules

R	stoichiometry	box size	N _{wat}
Н	1:1	$28.7 \times 30.6 \times 26.2$	791
	1:2	$31.5 \times 31.2 \times 26.3$	884
Me	1:1	$31.4 \times 29.0 \times 27.1$	829
	1:2	$32.8 \times 31.7 \times 26.8$	957
Ph	1:1	$33.6 \times 30.7 \times 31.1$	1088
	1:2	$36.2 \times 32.2 \times 31.7$	1238

CHART 1: Thermodynamic Cycle Showing the Charge Mutations from Direct/Two Steps Charge Mutations within the Complexes

$$OPR_{3}^{A} \quad UO_{2}(NO_{3})_{2}^{A} \xrightarrow{\Delta G^{\text{Total}}} OPR_{3}^{B} \quad UO_{2}(NO_{3})_{2}^{B}$$
$$\Delta G^{OPR_{3}} \downarrow \qquad \uparrow \quad \Delta G^{\text{salt}}$$
$$OPR_{3}^{B} \quad UO_{2}(NO_{3})_{2}^{A}$$

The atomic charges come from a Mulliken analysis of the HF/ DZP* wave functions of the isolated OPR₃ ligand and $UO_2(NO_3)_2$ salt (reference state A) and of the $UO_2(NO_3)_2$...OPR₃ complex (state B). Calculation of changes in free energy by FEP requires adequate sampling of the system by MD. We noticed, as in our previous studies on nitrato complexes in water, 10,12,13 that the free MD led to changes in cation coordination: the NO3anions evolve from a bidendate to a monodendate coordination, while some water molecules move in the first coordination sphere of the cation. It is not clear whether such coordination patterns, different from those observed in solid-state analogues,¹⁶ result from computational artifacts or if they depict the real solution behavior. They are followed by large energy changes, which depend on the ligand (via changes in water accessibility and in nonbonded interactions). As our goal is to compare solvation effects due to electronic changes in the solute, from a ligand to the other, we decided to impose a common coordination type for the complexes in solution. For this purpose, a restraining harmonic potential $k(d_0 - d)^2$ was imposed to the four U····O_{NO3}⁻ distances d to achieve a bidentate coordination of the anion (k = 20 kcal mol⁻¹; $d_0 = 2.55$ Å). This led to weak constraint energies (from 1.2 to 1.6 kcal mol⁻¹). All other parameters of the system were free of constraints during the simulations. In all cases, excepted for the OPH₃ 2:1 complex, the ligands remained bound to the uranyl ion in water.

Two independent mutations were performed on the complexes (see Chart 1). In the first one (ΔG^{Total}), the charges of the whole solute were mutated simultaneously. In the second one, we calculated first the change in hydration free energy due the ER

of the complexed OPR₃ ligand only (ΔG^{OPR_3}), followed by the contribution of the UO₂(NO₃)₂ moiety (ΔG^{salt}). The results are reported Table 6. One first notices that ΔG^{Total} is, within 1 kcal mol⁻¹, equal to the sum of ΔG^{OPR_3} and ΔG^{salt} , which indicates that the sampling is sufficient.

The results make clear that, in all cases, for the 1:1 and for the 2:1 complexes, the electronic reorganization of the solute which is induced by complexation enhances its solvation: ΔG^{Total} is negative, as are the ΔG^{OPR3} and ΔG^{salt} contributions. The most important and unexpected result is the near constancy of ΔG^{Total} when the ligand changes: ΔG^{Total} is about -16 kcal mol^{-1} for the 2:1 complexes and -12 kcal mol^{-1} for the 1:1 complexes. This likely results from a compensation of two opposite effects: in the H/Me/Ph series of OPR₃ ligands, the charge transfer from the ligand to uranyl cation increases, and the latter should interact less with water. On the other hand, the OPR₃ ligand becomes more polarized by the cation, and should interact better with water. These trends are analyzed by an energy-component analysis performed on the complexes simulated by MD for 100 ps with the charges of state A and with those of state B. The average interaction energies between OPR_3 , the $UO_2(NO_3)_2$ moiety, and water are reported in Table 6. They confirm that upon ER the OPR₃…water attraction increases (by 15–19 kcal mol⁻¹ for the 1:1 complexes, and by 7-9 kcal mol⁻¹ in the 2:1 complexes), while the UO₂²⁺...water interactions decrease (by 5-17 kcal mol⁻¹ in 1:1 complexes and by 5-12 kcal mol⁻¹ in 2:1 complexes). The solventaccessible surface of the different moieties and precise hydration patterns of the complex also play an important role. Indeed, in the 1:1 complexes, where the uranyl cation can coordinate one water molecule, the $UO_2^{2+\cdots}$ water interactions are attractive (from -35 to -7 kcal mol⁻¹, state B), whereas they are repulsive in the 2:1 complexes (from +7 to +48 kcal mol⁻¹, state B). The large variation in these numbers also point out the dramatic effect of the ligand substituents on the cation solvent interactions. Generally speaking, this should be important in modeling studies of transition metal complexes in polar solvents, when, for purpose of computer time savings, substituents are replaced by H or by small alkyl groups.

Another interesting feature emerges from the energy component analysis of Table 6: the cation-ligand interaction energies, although obtained from a relatively crude force field model, correctly reproduce the trends noticed above in the gas phase. With both sets of charges, the sequence of binding is OPH₃ < OPMe₃ < OPPh₃. As expected, the energy scale is larger with the charges of state B (about 34 ± 3 kcal mol⁻¹ for

TABLE 6: Complexes in Water. Relative Free Energies of Hydration and Average Energy Components (kcal mol⁻¹)

		1:1 complexes			1:2 complexes	
	R = H	R = Me	R = Ph	R = H	R = Me	R = Ph
$\Delta G^{ ext{Total }a}$	-11.3 ± 0.4	-12.4 ± 0.4	-12.0 ± 0.6	-15.1 ± 0.1	-16.2 ± 0.4	-16.6 ± 0.4
$\Delta G^{\mathrm{OPR}_3 b}$	-8.2 ± 0.1	-8.4 ± 0.3	-5.9 ± 0.6	-8.9 ± 0.9 ^f	-7.8 ± 0.2	-7.5 ± 0.1
$\Delta G^{\mathrm{salt}c}$	-3.1 ± 0.1	-4.6 ± 0.1	-5.3 ± 0.1	-7.1 ± 0.8^{f}	-8.7 ± 0.1	-10.4 ± 0.1
$\langle E(\text{Uranyl} \cdots \text{OPR}_3) \rangle A^d$	-40 ± 2	-51 ± 2	-63 ± 3	-40 ± 3	-52 ± 2	-64 ± 3
$\langle E(\text{Uranyl}\cdots\text{OPR}_3)\rangle B^e$	-39 ± 3	-51 ± 3	-74 ± 3	-35 ± 3	-48 ± 3	-68 ± 2
$\langle E(OPR_3 \cdots Wat) \rangle A^d$	-11 ± 5	-15 ± 5	-43 ± 6	-17 ± 4	-20 ± 5	-52 ± 7
$\langle E(OPR_3 \cdots Wat) \rangle B^e$	-28 ± 6	-30 ± 7	-62 ± 10	-26 ± 5	-30 ± 7	-59 ± 7
$\langle E(\text{Uranyl}\cdots\text{Wat})\rangle A^d$	-40 ± 10	-35 ± 10	-24 ± 10	-1 ± 11	$+9 \pm 11$	$+27 \pm 10$
$\langle E(\text{Uranyl}\cdots\text{Wat})\rangle \mathbf{B}^{e}$	-35 ± 11	-25 ± 11	-7 ± 11	$+7 \pm 10$	$+18 \pm 11$	$+48 \pm 11$

^{*a*} Calculated by mutating the charges of the whole complex. ^{*b*} Calculated by mutating the charges of OPR₃ within the complex (step 1). ^{*c*} Calculated by mutating the charges of UO₂(NO₃)₂ within the complex (step 2). ^{*d*} Average interaction energies and fluctuations in the complex, calculated with the charges of OPR₃ and UO₂(NO₃)₂ uncomplexed (state A). ^{*e*} Average interaction energies and fluctuations in the complex, calculated with the charges of the OPR₃ and UO₂(NO₃)₂ within the complex (state B). ^{*f*} One OPH₃ ligand dissociates during the simulation.

1:1 and 2:1 complexes) than with those of state A (about $24 \pm 3 \text{ kcal mol}^{-1}$ for 1:1 and 2:1 complexes). These numbers are smaller than those calculated in the gas phase because the U···O distances are somewhat longer and looser in solution than they are in the gas phase. It is however gratifying to note, as did Craw et al.,⁷ that force-field calculations provide similar trends for uranyl····ligand interactions, as those obtained from QM studies alone.

Discussion and Conclusion

We report theoretical studies on complexes of both practical and theoretical importance. The QM calculations allow to get insights into the gas-phase (intrinsic) binding features. As expected from polarization and charge-transfer effects, aryl substituted phosphine oxide ligands interact better with UO_2^{2+} than alkyl analogues do. The same conclusion holds with the Sr^{2+} or with the highly charged lanthanide or actinide cations.³⁹ However, multiple coordination of ligands and counterions to UO_2^{2+} may change this conclusion, as shown on the $UO_2(NO_3)_2$ complexes. A first effect, widely exploited in supramolecular chemistry, concerns the ligand-ligand repulsions around the ion. With macrocylic or polydentate ligands, such repulsions are already paid for in the course of the synthesis, instead of being paid for upon complexation.¹⁸ This effect largely contributes to the "macrocyclic effect".¹⁸ In our case, it is found that the "best" phosphorylated ligand bears aryl substituents, which are also the bulkiest and most repulsed by the NO3⁻ counterions. The electrostatic repulsion increases with the ligand size and polarizability. In the optimized 1:1 complexes, we estimated these electrostatic interactions, using the ab initio HF/DZP*-optimized geometries and the Mulliken point charges within the complex. Indeed, the repulsion between the two NO_3^- anions and OPR₃ is larger with OPPh₃ than with the OPMe₃ ligand (19.5 and 25.1 kcal mol⁻¹, respectively). Using the charges from the DZA* calculations give the same trends (22.5 and 22.6 kcal mol⁻¹, respectively). Generally speaking, polarization of the ligand and of the anion, an intrinsic stabilizing feature, also increases the ligand-ligand and the ligand-anion repulsions. On the basis of these features, the importance of topologically connected binding sites of the ligand, as achieved in macrocyclic ionophores, can be stressed.

Another comment relates to the relevance of solid-state structures to study the coordination pattern of uranyl. To our knowledge, the data reported so far for complexes of monodentate ligands with NO_3^{-16} (or RCO_2^{-}) as counterions are of 2:1 instead of 1:1 stoichiometry. Our calculations clearly show that the precise structure and charge distribution depend on the stoichiometry and on the presence of counterions, and that the 1:1 complexes cannot be compared with the 2:1 ones. Thus, with macrocyclic ligands, like CMPO or phosphine oxyde derivatives of calixarenes,¹⁹ it can be stressed that the competition between ligand wrapping around the cation and counterion coordination, markedly determines the binding efficiency and selectivity: suitable ligands replace not only the solvent (generally water) molecules coordinated to the cation, but also the counterions. This enhances the cation...binding sites interactions within the complex.

(1) Stereochemical Preference for OPR₃ Coordination to UO_2^{2+} . Two structural features deserve some comments. The first one concerns the linearity of the U····O=P unit, and the second the eclipsed/staggered arrangement of the R groups of OPR₃ with respect to the O=U=O axis of UO_2^{2+} . In the calculations reported above on the UO_2^{2+} complexes, the U····O=P unit was supposed to be linear ($\alpha = 180^\circ$; see Figure 1) and kept fixed for time saving purposes, while one R group of OPR₃ was eclipsed with one U=O bond ($\gamma = 0^{\circ}$; see Figure 1). Charge transfer and polarization effects are expected to be largest when α is 180°. In solid-state structures, however, this angle is not linear and close to 160° (see for instance the $(OPPh_3)_2UO_2X_2$ 2:1 complexes, with $X^- = Cl^{-40}$ or $X^- =$ NO_3^{-41}). This may be related to the OPR₃···X⁻ repulsions or to crystal environment effects. In the AMBER MD simulations on the 2:1 UO₂(NO₃)₂···OPPh₃ complex in water, where the ligand was free to move, we found a U····O=P angle of 148° in the OPPh₃ 2:1 complex, which suggests that the linear arrangement is not optimal, due to steric interactions. In the solid-state structures of UO₂(NO₃) complexed with CMPO ligands which possess a phosphoryl and a carbonyl group as potential binding sites, coordination to the U atom is not linear either. The U····O=P angles range from about 135° (corresponding to a bidentate coordination to both groups^{42,43}) to 165° (corresponding to a monodentate coordination to O_P only⁴⁴).

We therefore decided to perform additional QM calculations. We considered a staggered arrangement ($\gamma = 0^{\circ}$; see Figure 1) of the [UO₂····OPR₃]²⁺ system and reoptimized the U···O, O=P distances, the U···O–P bond angle, and the rotation around the P–C bond. This yielded energies which were similar to those of the eclipsed form in the case of R = H or Me, and slightly higher in the case of R = Ph. Moreover, the optimized U···O–P α angle was always found very close to 180°. Enforcing then a value of 160° for this angle led to an additional destabilization of 7.7, 3.5, and 2.2 kcal mol⁻¹ for R=H, Me, and Ph, respectively. We can thus conclude that the bent M–OPR₃ arrangement that is observed experimentally is not an *intrinsic* property of the OPR₃ complex, but is most probably due, in the OPPh₃ case, to the presence of other ligands and of the counterions, or to some crystal packing effects. Indeed similar calculations carried out for the 1:1 UO₂(NO₃)₂···OPH₃ and $UO_2(NO_3)_2$...OPMe₃ complexes in which the O_P ...U...N_{NO3} angles were allowed to relax led also to a preference for a linear U····O–P arrangement, whatever the conformation of OPR₃, staggered or eclipsed with respect to O=U=O, is. On the other hand, for the staggered $UO_2(NO_3)_2$...OPPh₃ system an optimized α angle of 169.3° was computed, leading to an energy stabilization of 1.7 kcal mol⁻¹, compared to the linear arrangement. Moreover, in two additional single point calculations on this system with the two O····U···N angles constrained at 90°, as in the 2:1 complexes, the structure with $\alpha = 160^{\circ}$ was found to be destabilized by 20.4 kcal mol^{-1} with respect to the structure with $\alpha = 180^{\circ}$. Finally in an attempt to check whether the above findings could also be applicable to the 2:1 complexes, geometry optimizations, limited again to the $U \cdots O_P$, $U \cdots O_{NO3}$, O=P, and U····N distances, the U····O-P bond angle and the rotational angle around the P-C bonds, were performed for $UO_2(NO_3)_2(OPH_3)_2$ and $UO_2(NO_3)_2(OPMe_3)_2$ (under C_i symmetry). As for the 1:1 systems, a linear geometry of the U···O-P unit and a free rotation of the OPR₃ ligand were found. Thus all these results taken together justify our choice of initial structures to compare the interactions of OPH₃, OPMe₃, and OPPh₃, in the gas phase and in solution. They also confirm the importance of anion-ligand interactions in complexes of the most bulky OPPh₃ ligands.

(2) Solvation and Binding Selectivity. Solvation is known to markedly modify the effectiveness of noncovalent interactions and of the complexation processes. An important aspect concerns the change in solvation energy upon complexation, most of which arises from the desolvation of the ion. Here, we consider another feature: upon complexation, there is a significant electronic reorganization ER, due mostly to charge transfer and polarization effects. Such ER induces a change in solvation free energies, which become more negative in the systems studied. In the series of OPR₃ ligands considered here, this change is found to be nearly constant, which indicates that this effect does not contribute markedly to their binding selectivity. At a quantitative level, this conclusion may depend on the electrostatic representation of the system (point charges/ multipoles, etc.), as well as on the method used to derive these parameters. One might argue that ER is somewhat underestimated with Mulliken charges, as compared to ESP charges which are known to enhance the polarity of the system. We notice however that the dipole moments calculated with the Mulliken charges are close to those obtained from *ab initio* QM wave function (e.g., 4.9/4.7 D for OPH₃ free; 12.6/12.6 D for the OPH₃ complex; 7.9/5.1 D for OPPh₃ free, and 16.6/15.3 D for the OPPh₃ complex). We attempted to derive such charges using the Merz Kollman procedure, but they led to some inconsistencies concerning the phosphoryl bond polarity, due to the poor solvent accessibility of this group within the complex. They are reported in ref 45. Generally, in MD and FEP calculations, the point charges on the ligand are kept fixed. Merz et al. studied the PMF of K⁺ dissociation from 18-crown-6 in methanol and recalculated ESP charges along the PMF.⁴⁶ Mixed QM/MM methods, where the ligand is calculated by QM and the rest of the system by classical MM methods represent a promising approach to analyze such effects.^{47–50} Improved treatments should also take into account the ER of the first shell solvent molecules.⁴⁹ Our study with a fixed solvent representation shows that the change in free energy due to ER is quite large (about 11 to 16 kcal mol^{-1}) compared to energy differences related to the binding selectivities. As pointed out by the energy

component analysis of aqueous solutions simulated by mixed MM/QM methods, solute—solvent polarization energies should be also taken into account.^{47,50} We chose water as solvent to model a polar protic solvent which displays significant interactions with polar solutes, but as far as liquid—liquid extraction processes are concerned, it is clear that the change in solvation energy due to the ER depends markedly on the microenvironment of the complexed cation, including the whole ligand, the counterions, and the water molecules dragged in the organic phase. These questions are presently investigated by simulations in our laboratory.

Acknowledgment. The authors are grateful to PRACTIS for supporting part of this work and to IDRIS for computer resources. F. Hutschka thanks the French ministry of research for a grant. We are also grateful to Professor P. J. Hay for providing us pseudopotential parameters of U. U. L. Troxler thanks EEC for a grant (Grant F14W-CT0022).

References and Notes

(1) Rozen, A. M. J. Radioanal. Nucl. Chem. 1990, 143, 337-355.

(2) Cecille, L.; Casarci, M.; Pietrelli, L. *New separation chemistry techniques for radioactive waste and other specific applications*; Commission of the European Communities; Elsevier Applied Science: New York, 1991.

(3) Franczyk, T. S.; Czerwinski, K. R.; Raymond, K. N. J. Am. Chem. Soc. **1992**, 114, 8138–8146.

(4) Tabushi, I.; Kokube, Y. *Nippon Kaisui Gakkaishi* 1982, *36*, 205.
(5) Badertscher, M.; Welti, M.; Portmann, P.; Pretsch, E. *Top. Curr. Chem.* 1986, *136*, 17 and references therein.

(6) Cornehl, H. H.; Heineman, C.; Marçalo, J.; de Matos, A. P.; Schwarz, H. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 891–894 and references therein.

(7) Craw, J. S.; Vincent, M. A. J. Phys. Chem. 1995, 99, 10181-10185.

(8) Pyykkö, P.; Zhao, Y. Inorg. Chem. 1991, 30, 3787.

- (9) van Wezenbeck, E. M.; Baerends, E. J.; Snijders, J. G. Theor. Chim. Acta 1991, 81, 129.
 - (10) Guilbaud, P.; Wipff, G. J. Phys. Chem. 1993, 97, 5685-5692.
- (11) Guilbaud, P.; Wipff, G. J. Mol. Recognit. Inclusion Phenom. 1993, 16, 169–188.

(12) Guilbaud, P.; Wipf, G. J. Mol. Struct. (THEOCHEM) 1996, 366, 55–63. Guilbaud, P.; Wipff, G. New J. Chem. 1996, 20, 631–642.

(13) Muzet, N.; Wipff, G.; Casnati, A.; Domiano, L.; Ungaro, R.; Ugozzoli, F. J. Chem. Soc., Perkin Trans. 2 **1996**, 1065–1075.

(14) Horwitz, E. P.; Diamond, H.; Martin, K. A. *Solvent Ext. Ion Exch.* **1987**, *5*, 447–470.

(15) Choppin, G. R.; Nach, K. L. Radiochim. Acta 1995, 70/71, 225-236.

(16) Casellato, U.; Vigato, P. A.; Vidali, M. Coord. Chem. Rev. 1981, 36, 183–265.

(17) Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen, J. J.; Sen, D. Chem. Rev. **1985**, 85, 271–339.

(18) Lehn, J. M. Struct. Bonding 1973, 161, 1-69.

(19) Arnaud-Neu, F.; Böhmer, V.; Dozol, J. F.; Grüttner, C.; Jakobi, R.

A.; Kraft, D.; Mauprivez, O.; Rouquette, H.; Schwing-Weill, M.-J.; Simon, N.; Vogt, W. J. Chem. Soc., Perkin Trans. 2 **1996**, 1175. Yaftian, M. R.;

Burgard, M.; Matt, D.; Dieleman, C. B.; Rastegar, F. Solvent Extract. Ion *Exch.* **1997**, *15*, 975–989.

(20) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Reploge, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzales, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. *Gaussian-92*; Gaussian, Inc.: Pittsburgh, PA, 1992.

(21) Hay, P. J. Private communication.

(22) Dolg, M. Lanthanide and Actinides. in *Encyclopedia of Compu*tational Chemistry; Schleyer, P. v. R.; Ed.; J. Wiley: New York. In press.

(23) Pyykkö, P.; Li, J.; Runeberg, N. J. Phys. Chem. 1994, 98, 4809.
(24) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1994, 100, 7535.

(25) Dalley, N. K.; Mueller, M. H.; Simonsen, S. H. Inorg. Chem. 1971, 10, 323–328.

(26) Taylor, J. C.; Mueller, M. H. Acta Crystallogr. 1965, 19, 536-543.

(27) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.

(29) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.

M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. **1995**, *117*, 5179–5197.

(30) Jorgensen, W. L. J. Am. Chem. Soc. 1981, 103, 335-340.

(31) Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A. Science **1987**, *236*, 564–568.

(32) Engler, E.; Wipff, G. *MD-DRAW software. Display of dynamic structures from MD simulations.* In *Crystallography of Supramolecular Compounds*; Tsoucaris, G., Ed.; Kluwer Academic Publishers: Dordrecht, 1996; pp 471–476.

(33) Wilkins, C. J.; Hagen, K.; Hedberg, L.; Shen, Q.; Hedberg, K. J. Am. Chem. Soc. **1975**, 97, 6352–6358.

- (34) Gilheany, D. G. Chem. Rev. 1994, 94, 1339-1374 and references therein.
- (35) Bollinger, J. C.; Houriet, R.; Kern, C. W.; Perret, D.; Weber, J.; Yvernault, T. J. Am. Chem. Soc. **1985**, 107, 5352–5358.
- (36) Kollman, P. J. Am. Chem. Soc. 1977, 99, 4875.
- (37) Morokuma, K. Acc. Chem. Res. 1977, 10, 294.

(38) Gans, P.; Smith, B. C. J. Chem. Soc. 1964, 4172-4176.

- (39) Troxler, L.; Dedieu, A.; Hutschka, F.; Wipff, G. J. Mol. Struct. (THEOCHEM) 1998, 431, 151-163.
- (40) Bombieri, G.; Forsellini, E.; Day, J. P.; Azeez, W. I. J. Chem. Soc., Dalton Trans. **1978**, 677–680.
- (41) Alcock, N. W.; Roberts, M. M.; Brown, D. J. Chem. Soc., Dalton Trans. 1982, 25-31.
- (42) Caudle, L. J.; Duesler, E. N.; Paine, R. T. Inorg. Chim. Acta 1985, 110, 91–100.
- (43) Bowen, S. M.; Duesler, E. N.; Paine, R. T. Inorg. Chem. 1983, 22, 286–290.
- (44) Babecki, R.; Platt, A. W. G.; Tebby, J. C.; Fawcett, J.; Russel, D.R. *Polyhedron* 1989, *10*, 1357–1360.
- (45) Hutschka, F. Thesis, Université Louis Pasteur, Strasbourg, 1997.
 (46) Marrone, T. J.; Hartsough, D. S.; Merz, K. M., Jr. J. Phys. Chem.
 1994, 98, 8, 1341–1343.
- (47) Thompson, M. A.; Glendening, E. D.; Feller, D. J. Phys. Chem. 1994, 98, 10465-10476.
 - (48) Thompson, M. A. J. Am. Chem. Soc. 1995, 117, 11341-11344.
 - (49) Gao, J. Acc. Chem. Res. 1996, 29, 298-305.
 - (50) Gao, J. J. Comput. Chem. 1997, 18, 1061–1072.